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Abstract

 Rationale—Short-term effects of air pollution exposure on respiratory disease mortality are 

well established. However, few studies have examined the effects of long-term exposure, and 

among those that have, results are inconsistent.

 Objectives—To evaluate long-term association between ambient ozone, fine particulate matter 

(PM2.5, particles with an aerodynamic diameter of 2.5 µm or less), and chronic lower respiratory 

disease (CLRD) mortality in the contiguous United States.

 Methods—We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level 

covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and 

temperature), with random effects at state and county levels to account for spatial heterogeneity 

and spatial dependence.

 Measurements and Main Results—We derived county-level average daily concentration 

levels for ambient ozone and PM2.5 for 2001–2008 from the U.S. Environmental Protection 

Agency’s down-scaled estimates and obtained 2007–2008 CLRD deaths from the National Center 

for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD 

deaths, with a rate ratio of 1.05 (95% credible interval, 1.01–1.09) per 5-ppb increase in ozone; the 

association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant 

(rate ratio, 1.07; 95% credible interval, 0.99–1.14).

 Conclusions—This study links air pollution exposure data with CLRD mortality for all 3,109 

contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from 

CLRD in the contiguous United States. Although we adjusted for selected county-level covariates 

and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of 

ecologic bias remains.
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Short- and long-term exposure to ozone and PM2.5 (particles with an aerodynamic diameter 

of 2.5 µm or less) air pollution may contribute to an increased risk of the onset of disease, 

exacerbation of symptoms, and mortality (1). The short-term effects of ambient ozone and 

PM2.5 on respiratory disease mortality are well established (2–5). However, few studies have 

examined the effects of long-term exposure and, among those that have, results are 

inconsistent (6–11). Understanding the specific contribution of short-term (up to a few 

weeks) versus long-term (1 yr or more) exposure is complicated and is typically approached 

using different study designs (1). Unlike time-series studies, which examine deaths due to 

short-term exposure, cohort studies are used to evaluate deaths over a longer time period, 

reflecting cumulative effects of both short- and long-term exposure.

Using the American Cancer Society (ACS) cohort, Jerrett and colleagues found a significant 

association between long-term ozone exposure and respiratory disease mortality (8). In their 

more recent study of a California component of the ACS cohort, however, the association 

between ozone exposure and respiratory mortality was positive but insignificant (7). A 

multicity study of Medicare participants (mainly ≥65 yr) did find a positive association 

between long-term exposure to ozone and an increased risk of respiratory disease death—

particularly in those with chronic obstructive pulmonary disease (COPD), diabetes, 

congestive heart failure, and myocardial infarction (11). Results from studies evaluating the 

association between long-term exposure to PM2.5 and respiratory disease mortality have 

suggested no association or positive but insignificant association (9, 10).

Deaths from chronic lower respiratory disease (CLRD), which includes mainly asthma and 

COPD (emphysema and chronic bronchitis), account for 50% of all respiratory disease 

mortality and is the third leading cause of death in the United States (12). Although short-

term studies suggest a linkage between air pollution and CLRD morbidity and mortality 

(13), the effects of long-term air pollution on CLRD mortality remain uncertain. Previous 

studies focus on specific segments of population (e.g., aged ≥65 yr) or individuals willing to 

participate in prospective cohort studies (e.g., the ACS cohort). However, these studies are 

limited to metropolitan areas, and no national study exists. The U.S. National Environmental 

Public Health Tracking Network (Tracking Network) is a nationwide surveillance system 

that contains environmental and health data at state and county levels (14). In this study, 

county-level data were used to examine the association between long-term exposure to 

ozone and PM2.5 and CLRD mortality. We restricted our study to 48 states and the District 

of Columbia (3,109 counties), because modeled estimates of ozone and PM2.5 concentration 

were not available in the noncontiguous states of Alaska and Hawaii. To minimize potential 

bias related to traditional ecologic analyses, we used Bayesian hierarchical spatial modeling 

to account for five known place-varying confounders and unobserved heterogeneity and 

spatial dependence (15).
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 Methods

We included 265,223 deaths that occurred among adults 45 years of age or older during 

2007–2008 in the contiguous United States. Each death record had a U.S. county identifier 

in the restricted mortality data file, which allowed us to summarize death counts by county 

and to link them with other county-level data sources. CLRD deaths included those with 

underlying cause coded as J40–J47 (ICD-10 codes). We derived county-level average daily 

ozone and PM2.5 by aggregating 2001–2008 census-tract-level 8-hour maximum ozone and 

24-hour average PM2.5 concentration, generated by the U.S. Environmental Protection 

Agency for the Tracking Network based on monitored data and output from the Community 

Multi-scale Air Quality modeling system (16). County-level lifetime smoking prevalence 

(percentage of adults who were current or former smokers) and obesity prevalence 

(percentage of obese adults with body mass index [the ratio of height to weight] ≥30) were 

derived from the Behavioral Risk Factor Surveillance System (2007–2008) (17), using the 

method suggested by Zhang and colleagues (18). The county-level percentage of adults at 

least 65 years of age and poverty levels (percentage of adults below the federal poverty line) 

were obtained from 2007–2008 census data (19). Extremely hot days were defined as the 

average annual number of days with maximum temperature equal to or greater than 90 

degrees Fahrenheit (°F). County-level daily maximum temperatures during 2001–2008 were 

obtained from the Tracking Network, originally from the North American Land Data 

Assimilation System (14).

We fit Bayesian hierarchical spatial Poisson models using CLRD death counts as the 

outcome and county-level variables as predictors. Five models were explored with different 

random effect specifications: model 1, state unstructured random effects only; model 2, state 

unstructured and county unstructured random effects; model 3, state unstructured and county 

spatially structured random effects; model 4, state unstructured, county unstructured, and 

county spatially structured random effects; model 5, model 4 with a mixture parameter 

embedded between county unstructured and county spatially structured random effects. 

Epidemiologically, state unstructured random effects specify state-level contextual effects on 

mortality; county unstructured random effects specify county-level heterogeneous contextual 

effects whereas county spatially structured random effects capture possible spatial 

dependence (i.e., spatial autocorrelation between adjacent counties). The mixture parameter 

allows the balance of county-level heterogeneity and spatial dependence. Our log-link 

Poisson regression model is log[yi] = log[Ei] + α + Xiβ + STj[i] + ρiUi + (1 – ρi)Si, where yi 

is the number of deaths for county i (i = 1, …, 3,109), Ei is the population (≥45 yr), α is the 

intercept, Xi is the vector of seven predictors (X1,i, …, X7,i), β[1, …, 7] is the corresponding 

regression coefficient, STj[i] (j = 1, …, 49) is state unstructured random effects, Ui is county 

unstructured random effects, Si is county spatially structured random effects, and ρ is the 

mixture parameter (0 ≤ ρ ≤1). County spatially structured random effects are formulated as 

 (20), where , wij = 

1, if i, j are adjacent counties, otherwise wij = 0. The state unstructured and county 

unstructured random effects are formulated as  and 

. , and  are the variance parameters of STj[i], Si, and Ui. In full 
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Bayesian analyses, prior distribution must be specified for these three variance parameters. 

We assigned diffusive/noninformative gamma distributions for these three parameters, as 

suggested by Bernardinelli and colleagues (21). We implemented these five models in 

WinBUGS1.4.3 and used the deviance information criterion (DIC) to compare model fit (15, 

22).

 Results

Table 1 shows the mean, range, and quartiles of ozone, PM2.5, and five selected 

demographic, socioeconomic, behavioral, and meteorological characteristics. Ozone 

exposure ranged from 27.8 to 52.0 ppb (median, 41.2 ppb), PM2.5 exposure ranged from 4.8 

to 16.8 µg/m3 (median, 10.9 µg/m3), percentage of adults 65 years of age or older ranged 

from 3.1 to 39.6% (median, 15.1%), percentage of adults below the federal poverty line 

ranged from 2.7 to 49.5% (median, 12.4%), lifetime smoking prevalence ranged from 24.6 

to 68.9% (median, 51.5%), obesity prevalence ranged from 16.6 to 50.2% (median, 30.0%), 

and extremely hot days ranged from 0 to 197 (median, 46).

Table 2 shows that model 3 produced the lowest DIC. The difference between the DIC for 

this model (21,474.7) and the DICs for models 4 and 5 (21,475.1 and 21,479.1, respectively) 

is admittedly small (<5), indicating that any of them could be the best model for describing 

the data (22). Still, model 3, with state unstructured and county spatially structured random 

effects, is preferred because it contains fewer parameters (23). In contrast, the difference is 

substantial between the DICs for models 3, 4, and 5 (21,474.7, 21,475.1, and 21,479.1, 

respectively) and the DICs for models 1 and 2 (21,606.4 and 21,607.4, respectively) (>5). It 

is evident that county spatially structured random effects dominate spatial dependence 

between neighboring counties, reflecting the effects of unobserved, spatially structured 

covariates.

Bayesian inference is based on posterior means (analogous to means) and credible intervals 

(CIs, analogous to confidence intervals). Table 3 presents adjusted rate ratios (RRs) and 95% 

CIs from model 3 (the preferred model with state unstructured and county spatially 

structured random effects), measured per five-unit increment for all variables. All predictors 

were positively associated with CLRD deaths. Specifically, the RR was 1.05 (95% CI, 1.01–

1.09) per 5-ppb increase in ozone exposure.

Ozone and PM2.5 were associated with a 5% (per 5-ppb increase in average ozone) and a 7% 

(per 5-µg/m3 increase in average PM2.5) increase in CLRD mortality, respectively, although 

the association between PM2.5 and CLRD mortality was not statistically significant. 

Together, ozone and PM2.5 explained about 3% of the total variation in log RRs (Table 4). 

Table 4 also shows that all predictors combined explained about 35% of the total variation 

with lifetime smoking, age (adults aged ≥65 yr), and poverty explaining most, whereas other 

unobserved covariates at state (5%) and county (60%) levels explained about 65%.

 Discussion

Our principal finding is that after controlling for selected demographic, socioeconomic, 

behavioral, and environmental risk factors, and other spatially unstructured and structured 
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contextual influences, ozone is associated with increased CLRD mortality rates across U.S. 

counties. A few cohort studies have observed similar results for ozone, but they were limited 

in terms of demographic or geographical coverage (8, 11, 24). This nationwide study 

explored the linkage between county-level concentration levels and aggregated deaths across 

the contiguous United States. Our analyses differ fundamentally from traditional ecologic 

analyses in that we used Bayesian hierarchical spatial modeling. Bayesian modeling allows 

for direct control of known (i.e., percent adults aged ≥65 yr, lifetime smoking, poverty, 

obesity, and temperature) and unknown (unstructured and spatially structured) risk factors. 

These analyses showed that CLRD mortality was significantly associated with ozone 

exposure. Such correlation might reflect an amalgam of complex pathophysiological 

pathways through which ozone could induce or accelerate pulmonary inflammation leading 

to CLRD mortality (25, 26).

Our results for the long-term effects of ozone on CLRD mortality are generally consistent 

with the findings from the ACS cohort (448,850 participants in 86 U.S. metropolitan areas 

during 1977–2000) (8) and Medicare subpopulations (3,210,511 persons with COPD in 105 

U.S. cities during 1985–2006) (11). Our adjusted RR estimate of 1.05 per 5-ppb increase in 

ozone—which is equivalent to 1.10 per 10-ppb increment— is lower than the estimate from 

Medicare participants hospitalized with COPD (RR, 1.07 [95% CI, 1.05–1.10] per 5-ppb 

increment), but it is higher than that from the ACS cohort (RR, 1.04 [95% CI, 1.01–1.07] per 

10-ppb increment). The study of a California ACS cohort reported a positive albeit 

insignificant association (RR, 1.02 [95% CI, 0.90–1.15] per 10-ppb increment), which might 

be due to the small number of participants (n = 73,711). The difference in RR estimates 

could be due in part to the difference in participants or study areas included in these studies. 

Participants hospitalized with COPD in the Medicare study might have had higher risk of 

CLRD death due to ozone exposure than did people without preexisting COPD as well as 

the general U.S. population. Participants in the ACS study were mainly white with relatively 

high educational attainment (27). Thus, subjects in the ACS study might have been healthier, 

and have had lower risk of CLRD death due to ozone exposure, than the U.S. population 

generally.

We found a positive but statistically insignificant association between long-term PM2.5 

exposure and CLRD mortality, with an adjusted RR estimate of 1.07 (95% CI, 0.99–1.14) 

per 5-µg/m3 increase in PM2.5 exposure, which is equivalent to 1.14 per 10-µg/m3 

increment. The Harvard Six Cities cohort (8,096 white participants) and California ACS 

cohort (73,711 participants) resulted in similar findings, with adjusted RRs of 1.05 (95% CI, 

0.95–1.15) for the California cohort and 1.08 (95% CI, 0.79–1.49) for the Harvard Six Cities 

cohort for an increase of 10 µg/m3 in PM2.5 exposure (7, 9). A study of a large ACS cohort 

(448,850 participants) using a single-pollutant model reported a similar association (RR, 

1.03 [95% CI, 0.96–1.11]) but reported an inverse and insignificant association in a two-

pollutant model when ozone was included (RR, 0.93 [95% CI, 0.84–1.03]) (8). Further 

studies are needed to confirm the association between PM2.5 and CLRD mortality at both the 

individual and aggregated population levels.

The increased risk of death due to CLRD associated with ozone was small compared with 

the risk posed by lifetime smoking, older age (≥65 yr), and temperature. Nevertheless, the 
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positive association between air pollution and CLRD mortality persisted after controlling for 

known and unknown factors at county and state levels. The adjusted RR for ozone was close 

to that for poverty, a county-level socioeconomic indicator—although lifetime smoking and 

older age were two known leading contributors to the CLRD mortality variation. It is worth 

noting that county-level unknown, spatially correlated influences contributed more than half 

of the CLRD death variations across U.S. counties; these influences were not considered in 

most previous studies. Also, the inclusion of spatially correlated random components could 

potentially increase the precision of the RR estimate for the known risk factors in which we 

were interested.

This study has several limitations. First, our single ecological study could not make any 

causal inference. Although we adjusted for available county-level covariates and unobserved 

influences, the possibility of ecologic bias remains. Furthermore, including 8 years of 

exposure data could be one of the strengths; however, it could also be a limitation because 

people could move during this time period and disease latency could be longer than the years 

we included in this study. Similarly, we could not account for any seasonal variation in or 

trend of exposure during this time period. National annual average ozone and PM2.5 both 

showed downward trends from 1980 (for ozone) and 2000 (for PM2.5), but such trends are 

not smooth and do show year-to-year influences of weather conditions, which contribute to 

ozone and PM2.5 formation in the air (28, 29). We used 8-year (2001–2008) average ozone 

and PM2.5 as proxies for their long-term exposure estimates; however, using exposure 

averaged during the early years (2001–2002) did not meaningfully change county-level RR 

estimates (see Table E4 in the online supplement). In addition, we did not address the 

seasonality of CLRD deaths, ozone, and PM2.5 because of the small sample size of CLRD 

deaths by season at the county level. Ozone shows a clear seasonal pattern, and linking the 

seasonal timing of death might strengthen the association found, if the number of deaths by 

season at the county level were sufficient to allow us to do so. Finally, we could not evaluate 

the sensitivity of ICD-10 codes (J40–J47) for the diagnosis of CLRD. Potential 

misclassification of CLRD as an underlying cause of death might introduce additional 

uncertainties in our findings. Findings of this national study suggest that ozone and PM2.5 

might have contributed to increased CLRD mortality across U.S. counties, although residual 

confounding cannot be excluded. The association observed between long-term ozone 

exposure and CLRD mortality across U.S. counties is in line with findings from previous 

cohort studies, but this study expands the evidence to the U.S. population. The positive 

association between long-term PM2.5 exposure and CLRD mortality is consistent with 

findings from previous studies. This U.S. national study provides additional evidence that 

ambient air pollutants, particularly ozone, could be important contributing factors in CLRD 

mortality.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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At a Glance Commentary

Scientific Knowledge on the Subject

The short-term effects of ambient ozone and fine particulate matter (PM2.5, particles with 

an aerodynamic diameter of 2.5 µm or less) on respiratory disease mortality are well 

established. However, few studies have examined the effects of long-term exposure and, 

among those that have, results are inconsistent.

What This Study Adds to the Field

This nationwide study links air pollution exposure data of ambient ozone and PM2.5 with 

chronic lower respiratory disease mortality for 3,109 contiguous U.S. counties. Our 

findings suggest that long-term exposure to ambient ozone may be associated with an 

increased rate of death from chronic lower respiratory disease in the contiguous United 

States.
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Table 2

Comparison of Deviance Information Criterion for Models with Different Random Effect Specification

Model Random Effect Specification DIC

1 State unstructured random effects only 21,606.4

2 State unstructured and county unstructured random effects 21,607.4

3 State unstructured and county spatially structured random effects 21,474.7

4 State unstructured, county unstructured, and county spatially
  structured random effects

21,475.1

5 Model 4 with a mixture parameter 21,479.1

Definition of abbreviation: DIC = deviance information criterion.
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Table 3

Adjusted Rate Ratios of Predictors Associated with Chronic Lower Respiratory Disease Deaths Measured per 

Five-Unit Increment for All Variables

Variable Rate Ratio 95% CI

Adults aged ≥65 yr, % 1.09 1.07–1.11

Poverty, % 1.06 1.04–1.08

Lifetime smoking, % 1.13 1.10–1.15

Obesity, % 1.03 1.01–1.05

Extremely hot days (≥90°F) 1.01 1.00–1.01

Ozone, ppb 1.05 1.01–1.09

PM2.5, µg/m3 1.07 0.99–1.14

Definition of abbreviations: CI = credible interval; PM2.5 = particulate matter with an aerodynamic diameter of 2.5 µm or less.
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Table 4

Variation in Chronic Lower Respiratory Disease Death Rates as Explained by Predictors and Random Effects

Variable Mean 2.50% Median 97.50%

Adults aged ≥65 yr, % 7.8% 4.9% 7.7% 11.1%

Poverty, % 5.7% 3.1% 5.6% 8.8%

Lifetime smoking, % 14.6% 10.0% 14.5% 19.7%

Obesity, % 0.8% 0.0% 0.7% 2.3%

Extremely hot days (≥90°F) 3.0% 0.2% 2.6% 7.8%

Ozone, ppb 1.3% 0.0% 1.1% 3.6%

PM2.5, µg/m3 1.8% 0.0% 1.5% 5.8%

State random effects 4.9% 2.5% 4.7% 8.5%

County spatial random effects 60.1% 53.7% 60.2% 66.0%

Definition of abbreviation: PM2.5 = particulate matter with an aerodynamic diameter of 2.5 µm or less.
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